
TEX as a callable function

Jonathan Fine
203 Coldhams Lane
Cambridge, CB1 3HY
United Kingdom
jfine@activetex.org

http://www.activetex.org

Abstract

Traditionally, TEX is run as a batch program. However, TEX can also be run as a
daemon, with a callable function interface. This talk describes the opportunities
and problems that follow from this new way of using TEX.

The TEX daemon

TEX is a reliable and high-quality typesetting pro-
gram that runs on a wide variety of platforms. It
is tremendously quick at typesetting, once it gets
going. However, it can take a significant fraction
of a second for TEX to initialise its data structures
(say by loading a precompiled format file). The TEX
daemon is a way of avoiding this start-up time, say
by removing it from the traditional edit-compile-
preview loop. Doing this makes Instant Preview and
other interactive applications of TEX possible.

A daemon or service is a program that is run-
ning continually in the background, waiting to be
called upon when required. Many Internet services,
such as FTP and HTTP, are provided by daemons.
A daemon supplies data, or provides a service such
a printing, upon request. Many daemons are essen-
tially stateless. In other words, one FTP request
does not affect the results of another. Cookies pro-
vide states to HTTP, which would otherwise be state-
less. For some daemons, such as a database server,
safely recording changes of state is one of the main
purposes.

By running TEX as a daemon, we avoid startup
costs. When typesetting a single paragraph, this can
give a speed-up of 30 to 50 times. It is precisely this
speed-up that makes it possible to use TEX as the
typesetting engine of interactive applications. How-
ever, care must be taken. Certain commands, when
fed to TEX, can cause it severe indigestion, or worse.

For example, in plain TEX the command \end
will in most circumstances cause TEX to terminate.
(For LATEX the command is \stop.) This is desir-
able, sooner or later, in a batch program, but not
in a daemon. This is a trivial example, but it shows
that inappropriate input can damage or even termi-
nate the TEX daemon.

Some other examples are more subtle. First of
all, TEX’s capacity is finite, and so can be broken.
Feed in too many control sequence names, say by
\csname, and TEX will run out of hash space. When
processing a single document, this is generally not
a problem. But if we want the TEX daemon to be
up and running all day, and processing fragments
from hundreds of documents, then TEX’s inability
to reclaim unused control sequence names could be
a problem. (See bugs 422 and 493 in TEX’s error
log, and the surprises section in [3].)

The most subtle example I am aware of con-
cerns hyphenation. The command
{\hyphenation{su-per-cal-i...}}

adds a word to the exception dictionary (for the cur-
rent language). However, this dictionary is global.
Exceptions do not disappear at the end of a group.
Therefore, as exceptional hyphenations are added
through the day, so TEX’s state slowly changes. As
a result, a paragraph that was broken into lines one
way in the morning might be broken in another in
the afternoon. TEX rightly has a reputation for giv-
ing the essentially identical results on identical in-
put. For the TEX daemon to preserve this admirable
quality, it must forbid new hyphenation exceptions,
or find some way of reversing additions to the ex-
ception dictionary, or find some other way out.

However, these are minor problems. As a dae-
mon TEX, has many admirable qualities. It does not
crash, core-dump, or otherwise come to an abrupt
end. It behaves in an entirely predictable way (even
if sometimes it surprises us). It does not leak mem-
ory. Correctly fed, it will typeset pages all day, and
still be as fresh at dusk as it was at dawn.

Although designed as a batch program, it is a
remarkable testament to the soundness of its design
and implementation, that it can also be run as a
daemon.

XIII European TEX conference (2002), Bachotek, Poland (pp. 26–35) 1



Jonathan Fine

TEX as a callable function

TEX takes as input a text stream, and its output
is a stream of pages, encoded as dvi. (There are
of course other inputs, such as fonts, hyphenation
data, and macros.) The output dvi file consists of a
preamble, then some pages, and then the postamble.
Every font that occurs in the dvi file is defined twice,
once immediately before its first use, and once in the
postamble.

Almost all dvi-reading programs go immedi-
ately to the post-amble, in order to pick up this list
of fonts. (Tom Rokicki’s previewer for the NeXT
platform is an exception. It can start previewing
from page one.) From the same place, they pick up a
pointer to the last page, and from there a pointer to
the previous page, and so on. Once they have done
this, they are in a position to perform random access
on the pages in the dvi file. If the postamble were
not available, to find and process say page 20, the
program would have to process all pages 1 through
to 19, firstly just to find page 20, and secondly to
be sure to pick up all previous font definitions.

Clearly, if TEX is run as a daemon, it is not
possible to wait for the postamble, before responding
to a user request. Instead, we have TEX write to
a named pipe or something similar, and place at
the other end of the pipe a utility program, that
parses the output dvi stream, and sends pages to
the appropriate destination.

The author’s program dvichop does just this.
It cuts the output stream into small dvi files, and
optionally sends a signal to the originating process.
This design decision allows existing dvi-ware to work
with the TEX daemon, at the quite bearable cost of
each byte of the dvi being processed twice.

Another benefit of this approach is that it al-
lows the behaviour of TEX as a callable function to
be specified. In the previous section, we learnt that
the TEX daemon should have a state, and that each
use of the TEX daemon should leave it in essentially
the same state. This imposes conditions of what we
can feed to the daemon. The fixed state of the TEX
daemon can be set up by a preloaded format file.

We can now define valid input to the TEX dae-
mon to be input that possibly produces output dvi,
but which does not otherwise change the state of
TEX. The grouping commands already provided by
TEX will go a long way towards enabling such input.
We can also define the output of the TEX daemon,
for any valid input. For simplicity, we assume that
the file is \input by TEX, with certain fixed macros
running before and after the \input command.

The output of TEX as a callable function is then
the dvi file produced, from the initial state defined
by the format file, after the given valid input is
processed, and an \end, \bye or \stop command
has been issued (or alternatively, have TEX make an
emergency stop).

We have just defined, without reference to the
implementation, the behaviour of TEX as a callable
function. The above definition gives one implemen-
tation. Using the TEX daemon (say with dvichop)
gives another, which will be much quicker on page-
sized files.

What should now be clear is that the preloaded
format file, and the creation of valid input, are cru-
cial to any particular instance of the TEX daemon.
Roughly speaking, there are four approaches to the
problem of valid input. The first is the original def-
inition, namely that it does not change the state
of TEX. However, this definition can detect invalid
input only after the event, which is too late. In ad-
dition, it does not give an interface to which a user
of the TEX daemon can write code for.

The second approach is to ensure that any in-
put whatsoever can be processed without changing
the state of TEX. Ordinarily, TEX input has direct
access to all primitive commands, and all macros, of
TEX. This approach involves inserted a layer of TEX
macros between the input file and the execution of
macros. This is similar to the protection offered by
a modern operating system kernel, which does not
allow user programs to access the hardware directly.

Active TEX [1], which makes all characters ac-
tive, is one way to do this. By definition, the only
commands that user input can directly access are
those tied to the characters. These commands in
turn will produce and execute control sequences.
However, this production of control sequences is un-
der the control not of the user, but of the system’s
layer of active characters.

The third approach is to use specially designed
software to filter out bad input, and translate into
standard TEX calls. Using an XSLT script to gener-
ate LATEX is an example of this approach. The input
is not creating TEX calls directly, and the LATEX that
is created can be tightly controlled. In many such
cases, in principle if not in fact, a formal specifica-
tion could be given for the possible outputs. Such
would be a contract between the creator of input to
TEX and the provider of TEX macros.

Here is an aside. In the author’s view, even
though it has many capabilities and wide range of
libraries, LATEX is not a suitable language for this
purpose. This is because it has many exceptions,
and because it was not designed with purposes such

2 XIII European TEX conference (2002), Bachotek, Poland (pp. 26–35)



TEX as a callable function

as machine generated input and output supporting
interaction in mind. For example, many of its facil-
ities rely on category code changes. In addition, in
some cases ‘[’ has a special meaning. The author,
who thinks himself an expert, from time to time falls
into such gotchas.

Using XSLT to produce LATEX is today a sensi-
ble short-cut for producing print from XML. How-
ever, surely even its most devoted supporters will
agree that for LATEX to be an internal interface for-
mat for a web browser or a WYSIWYG word proces-
sor would be a triumph of inertia over sound design.

The fourth approach is to ignore the problem,
and provide a means for restarting the TEX daemon
if it gets into trouble. Instant Preview uses this ap-
proach, largely by running TEX in \errorstopmode,
and using a judicious \outer macro to stop errors
propagating from outside user area. Of course, if
the user input contains

\global\let\let\undefined

then the user will get what he or she deserves (which
is no sensible output).

Finally, there are a number of technical problem
related to the implementation of TEX as a callable
function. In this paper, we will simply note three of
them. The function call will send a string to TEX,
and expect to get dvi back in return. The first prob-
lem is not to return until the dvi is available, or in
other words to wait until TEX is done. The second
is not to block, or in other words have both TEX and
the function call both waiting for the other to supply
input. The third is to handle contention, or in other
words, multiple requests overlapping in time. These
are standard problems in client-server programming,
and even if not by the TEX community, solutions are
well-known.

Random Access Typesetting

Several developers, besides myself, have been writ-
ing software that gives more or less immediate visual
feedback to the person editing the document. We all
face a common pair of problems: How to slice out
of the document a region to be typeset, and how to
initialise TEX so that it can correctly process this
slice. These are leading problems in random access
typesetting, a term which we will now define.

Most users of TEX know what random access
previewing is. It means loading a dvi file quickly,
and being access any page in the previewed docu-
ment quickly. Recall from the previous section that
a dvi file has special structure, designed specifically
to support such operations. Random access type-
setting is being able to go to any point in the source

document, and to quickly typeset some region sur-
rounding that point. Page breaks (and page num-
bers) present special problems. However, most of
the time getting these just right is not so important
to the user, so we will ignore this problem.

An extended form of random access typesetting
is where not only the point in the document is ran-
dom, but the choice of the document itself. This
is the sort of task a web browser has to deal with.
Later in this section we will see that it presents a
new range of problems.

A valid LATEX document has structure, under-
stood by the LATEX macros. Provided the document
is not too unusual, it is possible for another program,
such as a collection of Emacs macros, to divide the
document into blocks that can be typeset individu-
ally. However, such software is fragile. Careless key-
boarding, or even well-designed user defined macros,
can break such a system. The Perl scripts that con-
vert LATEX to HTML face similar problems, with
which their users are familiar.

This brings us to the second problem, which is
properly establishing the context in which the docu-
ment fragment can be typeset. Knowing the section
numbers and theorem numbers right is one part of
this problem. Knowing the formatting context (ab-
stract, footnote, body text etc.,) is the other.

The author’s preferred solution to this problem
is to make the document being edited responsible
for solving this problem. In other words, one writes
a script, based say on LATEX to HTML conversion,
that adds to the document what we can call belays.
(In climbing, a belay is a point of safety, to which a
climber attaches a rope.) Each belay should include
section, theorem and other such numbers, as well as
a statement as to the typesetting context.

The belay data need not be stored in the doc-
ument itself. It could be stored in the aux file (and
be made available to LATEX via a \csname lookup).
In this way, all that needs to be added to the docu-
ment are commands such as \belay{27}. This can
be done, say, with a Perl script. In addition,

\usepackage{belay}

in the preamble will cause an initial typesetting run
to write belay information to the aux file. At present,
belay.sty is vapour-ware. Thanks are due to Si-
mon Dales, who suggested the term ‘belay’, and to
Johan Andersson, for sharing with me a prototype
he set up along similar lines.

At present, LATEX is set up for sequential batch
typesetting, rather than random access typesetting.
This causes various problems. For example, in the

XIII European TEX conference (2002), Bachotek, Poland (pp. 26–35) 3



Jonathan Fine

article style file, the \maketitle command rede-
fines itself to \relax. There may be other similar
gotchas.

Here is another class of problems. Each LATEX
document has a preamble, and even when two arti-
cles are for the same journal, they very often have
different preambles. Even if two preambles differ
only by the use of a package, this presents a problem,
for at present LATEX allows packages to be loaded
only in the preamble, and not after typesetting is un-
derway. When two documents number theorems in
different ways, or have different user defined macros,
additional problems are created.

In light of this, the author believes that it is
not practical for two random LATEX documents to
share the same TEX daemon. The author also be-
lieves that with some judicious changes, LATEX can
successful be used for random access typesetting of
a single document. Some of these changes relate to
error recovery. For example \scrollmode and then
\section without any arguments produces an iso-
lated ‘]’ character in the output dvi file.

Macros for use with the TEX daemon

Without macros TEX is unusable, because its prim-
itive commands are, well, so primitive. A macro
package such as plain or LATEX does several things.
Some of these are: (1) It loads fonts and hyphen-
ation patterns. (2) It defines a custom input syn-
tax. (3) It sets typographic parameters such as the
measure, and provides commands for changing these
values. (4) It sets up commands for the typesetting
of mathematics. (5) ditto, but for tables. (6) It
defines an output routine. (7) It takes care of page,
section, equation and other numbering. (8) It writes
out index and table of contents information.

Both plain and LATEX were written for batch
use of TEX. The user creates a document, which is
submitted to the TEX compiler. TEX then returns,
hopefully, a dvi file and a log file. The user then
studies both. The log file records both parse errors
(such as misspelt control sequences) and typesetting
difficulties (such as overfull boxes). Except for the
media and the turnaround time, the situation is the
same as submitting punch cards to a mainframe.

The TEX daemon is a completely different set-
ting. TEX the program is already running, and we
would be well pleased if the user’s input left the
daemon as she would wish to find it. The robust so-
lution is to filter out user errors, particularly those
that harm the TEX daemon. As stated early, this
can be done in TEX macros, but other ways may be
better.

At a Question and Answer session (1996, Ams-
terdam), Piet van Oostrum asked Don Knuth about
TEX’s macro programming language [5, p648–9].

The reader is encourage to read the whole of
his response, and indeed all the Q+A sessions. Here
we summarise points of special interest. (1) Don
wanted to avoid introducing “yet another almost-
the-same programming language” for TEX. (2) Many
features were added “only after kicking and scream-
ing” from users. (3) Users wanted to “put low-
level things in at a higher level.” (4) Don expected
that “special applications would be done by chang-
ing things in the compiled code.” (5) Don wanted
to write just a typesetting language, and not a pro-
gramming language as well. (6) He also said “if there
were a universal simple interpretive language that
was common to other systems, naturally I would
have latched onto that right away.”

I have spent several hundreds of hours writing
clever TEX macros for doing low-level things (like
parsing SGML), and collectively the authors of big
macro packages have probably spent even longer do-
ing this sort of thing. I have learnt to accommodate
myself to the limitations of the language, and how
to make the best use of the features it does pro-
vide. Some of these programming tricks are inge-
nious, and even elegant. However, I think it is time
for a change.

One of the main reasons for this is that clever
TEX macro code can only be used with TEX (or
its successors), and conversely clever or even just
solid and reliable code in other languages cannot be
used inside TEX (although there may be some work-
arounds). Another reason is that other languages
can be more efficient, for both the programmer and
the computer.

Here is an example. To parse a text string is to
analyse its structure, to break it down into tokens
arranged in some way. A natural language parser
will find the subject, object and verb in a sentence.
Parsing is a non-trivial activity, upon which further
processing depends. LATEX contains a parser. But
because it is written in TEX macros, it cannot be
shared with other applications.

There is an alternative to TEX macros, not men-
tioned by Don in his answer. This may be because
he takes it for granted. Literate programming is an
example. Here a custom program (WEAVE) takes a
document that TEX does not understand, and pro-
duces from it an input file for TEX. Some XSLT

scripts are another example.
Since TEX was written in the 70s and 80s, there

have been new interpretive languages, some of which
are widely used. There’s Perl, Python and Ruby.

4 XIII European TEX conference (2002), Bachotek, Poland (pp. 26–35)



TEX as a callable function

There’s Java and JavaScript. There’s Scheme and
Guile. And there’s Visual Basic and C].

Are any of these, in Don’s words, “a universal
simple interpretive language [. . . ] common to other
systems”? But is this a judgement of Paris? How
can we use one, without offending the rest? Without
starting a language war? This is a difficult problem,
and like all human problems, its solution requires
both good-will, good ideas and a measure of wisdom.

The author suggests that TEX macros be used
where only TEX macros will do, or when required
for efficiency. External C/C++ modules for exter-
nal modules, such as an XML parser. Scripting lan-
guages for control of style and placement, and for
application specific code. A typical application to-
day might be to use Perl to retrieve records from
a database, and send them to TEX for typesetting.
Under the new scheme, the application would the
same, except the TEX stream would be written us-
ing a Perl interface module, rather than directly.

We do have at least one good example to fol-
low. The Tk graphics toolkit, was developed by
John Oosterhout as a companion to the Tcl script-
ing language. Since then interface modules for Perl
and Python have been written, that allow these lan-
guages to make Tk calls. Even though Perl, Python
and Tcl have different syntax, they all interface to
Tk in much the same way. Perhaps something sim-
ilar could be done with TEX.

dvi-ware for use with the TEXdaemon

Interactive applications place new demands on dvi
files, and on the programs used to process them.
The range of interactions with the previewed page
is vast, and at present hyperlinks and in some cases
marking of text is all that is supported.

Indeed, most programs for displaying dvi on
the screen are both by name and function preview-
ers. A preview is a depiction of something that is
not yet present. In our case, it depicts a typeset
page that we might or might not choose to print.
However, in many interactive applications what is
being displayed is not a preview, but the object it-
self. Indeed, in journalism it is common to print a
screen-shot of a web site, so as to preview (in print)
the object of interest, namely the web site.

dvichop is not a complicated or particularly
specialised dvi-processor. Before writing it, I looked
at the source for a good number of the free dvi-
ware programs, hoping to find some code I could
use. Sadly, I found nothing that was helpful. So I
had to write the program from scratch.

By and large, there are three types of dvi-ware:
utilities, printer drivers and previewers. So far as the

author knows, Anselm Lignau’s TkDVI is the only
dvi-processing program that can be used as part of
a scriptable interactive program.

Applications

Here we describe various applications already or be-
ing developed. In theory, and hopefully in the long
term, goals such as a web browser that supports
mathematics, and a WYSIWYG editor for TEX are
possible. Here, the focus is on small, simple and
largely self-contained projects that are immediately
useful, and which take us forward.

TEX showcase One of TEX’s great strengths is its
line-breaking algorithm. Because it optimises glob-
ally, change at the end of the paragraph can move
the first line break. We all know this in theory, but
seldom observe this in practice. Because the TEX
daemon provides instant feedback, it is now possible
to write an application that showcases TEX’s line-
breaking algorithm. In other words, as one changes
parameters and perhaps content, so one sees the
typeset paragraph change.

Other parts of TEX, such as the mathematics
and table typesetting, can be showcased in the same
way.

Interactive courseware Newcomers to TEX often
require a lot of visual feedback, to reinforce in their
minds the connection between the characters they
type and the words and formulae that appear on the
page. Using the TEX daemon as the typesetting en-
gine, interactive courseware can be built, that helps
beginner to learn LATEX, or whatever their favourite
macro package is.

Instant Preview This was demonstrated at Eu-
roTEX 2001 [2]. It works as follows. Suppose the
active buffer is in Preview mode. Then at every
keystroke a small region, that contains the part of
the buffer that is visible, is sent to the TEX daemon,
and thence displayed in an xdvi window. This pro-
vides Instant Preview.

References

[1] Jonathan Fine, Active TEX and the DOT input
syntax, TUGboat, 20, (1999), 248–254

[2] , Instant Preview and the TEX daemon,
EuroTEX 2001 Conference Proceedings, 49–58

[3] Donald E. Knuth, The Errors of TEX, Soft-
ware — Practice and Experience, 19 (1981), 607–
685. (Reprinted in [4])

[4] , Literate Programming, CSLI (1992).
[5] , Digital Typography, CSLI (1999).

XIII European TEX conference (2002), Bachotek, Poland (pp. 26–35) 5


