
TUGboat, vol 20(3), (1999), pp. 248–254 1

Active TEX and the DOT input syntax

Jonathan Fine
Active TEX
203 Coldhams Lane
Cambridge, CB1 3HY
United Kingdom
jfine@activetex.org

http://www.activetex.org

Abstract

The usual category codes give TEX its familiar backslash and braces input syntax.
With Active TEX, all characters are active. This gives the macro programmer
complete freedom in defining the input syntax. It also provides a powerful pro-
gramming environment.

The DOT input syntax, like TROFF, uses a period at the start of the line
as an escape character. However, its underlying element, attribute and content
structure is based on SGML. It is both easy to use and easy to program for.

Conversion to other formats, such as SGML, HTML and XML, or to propri-
etary formats such as Word and RTF, will be straightforward. This is because the
DOT syntax is rigorous. This new syntax will be described and demonstrated.

All manner of problems connected with TEX disappear when Active TEX
packages are used. For example, all input errors can be detected and corrected
before they can cause a TEX error message. This will make TEX accessible to
many more users.

Visit http://www.active-tex.demon.co.uk for information and macros.

Introduction

Much has changed since the introduction of TEX in
1982. Computers have become cheaper, more plenti-
ful and more powerful. The Internet has grown from
a tool used largely by North American academics to
become a mass medium subject to powerful com-
mercial interests. And Microsoft, who supplied an
operating system for IBM’s first PC, has become a
colossus.

Donald Knuth gave us a powerful and reliable
typesetting system. Other systems may be easier
to use and have all sorts of useful (and perhaps not
so useful) features, but when it comes to the typo-
graphic quality of the resulting pages, TEX is still
superior in many important respects to all of its
competitors. No other software even comes close to
matching it on its own home ground, which is tech-
nical books, articles and preprints that have large
amounts of mathematical material.

Both individuals and publishers are now mak-
ing information available on the Internet. This im-
poses new demands on the typesetting process. For
many users, HTML (and perhaps soon its replace-
ment XML) is the preferred means for supplying and
receiving textual material. Twenty years ago the

typeset page was the principal result of the typeset-
ting process. Today, users are wanting both typeset
pages and HTML or similar pages. By typeset pages
I mean both pages for printing in the usual way,
and also pages for display, say in the Portable Doc-
ument Format introduced by Adobe. (In principle,
this term also includes the formatting of, for exam-
ple, HTML, for display in a browser.)

Most TEX authors use a text editor (such as
emacs) to prepare a computer file in the LATEX syn-
tax, for example. Other authors will use a word
processor to create a file that is stored in a propri-
etary format. Later down the line, these files will be
typeset, converted into HTML and so forth.

By and large, the closer is the syntax of the
author’s file to being rigorous and compatible with
the processing that will be applied to it, the better
will be the outcome. Compromise may be neces-
sary. With TEX each author became his or her own
typesetter. Very often (LA)TEX files contain macro
definitions, introduced for the author’s own conve-
nience. These definitions can be a great nuisance
for those who have to deal with the file later, partic-
ular if they reside in an external file that becomes
separated from the main manuscript.

TUGboat, vol 20(3), (1999), pp. 248–254 2

This then is the present context for the use of
TEX. Most TEX users now use the LATEX macro
package, together with style files and additional pack-
ages. LATEX was developed in the early 1980s. The
first edition of its manual was published in 1985,
about a year after The TEXbook. It did a tremen-
dous job of making the resources of TEX available to
non-experts. Around 1990, however, its limitations
became clear, and more than an inconvenience. One
response was the birth of the LATEX3 project. In
1994 this group released LATEX 2ε. This helped to
standardise the current situation.

Recently, Rahtz [11] described LATEX as “hugely
powerful, but chaotic, and on the verge of becoming
unmanageable.” He also tells us that the CONTEXT
macro package, due to Hans Hagen and Pragma, ad-
dresses this problem by incorporating into itself “all
the facilities you need.” It does away with document
classes and user-contributed packages.

Plain TEX, LATEX and CONTEXT all use the fa-
miliar ‘backslash and braces’ input syntax. This can
cause problems, because it is not rigorous. Transla-
tion to HTML, for example, requires that the source
document be parsed. But LATEX, for instance, is
in general the only program that can successfully
parse LATEX documents. This tends to result in
(LA)TEX living in a world of its own, isolated from
the world of desktop publishing and word process-
ing. For some communities of users, such as mathe-
maticians, this may not be a hardship.

Active TEX is a new way of using TEX. It allows
us to either avoid or solve many of our problems. For
the technical, its key idea is that each character is
active, and is defined to be a macro. For example,
the active letter ‘x’ is a macro that expands to the
control sequence lcletter, followed by an active
‘x’. Uppercase letters, digits and visible symbols
are treated in a similar manner. By manipulating
these definitions, we can make TEX do whatever we
want. In particular, we can choose our input syntax.
Both TEX and the system macro programmer work
harder, to ease the life of both the user and the
application programmer.

We will consider the problems relating to macros
under three heads, namely input syntax (§2), macro
programming (§3), and the processing of text (§4).
The final section (§5) gives the history and prospects
of Active TEX, and an appeal for support. This ar-
ticle is somewhat informal, and should not be read
as a definitive or legally binding statement. The
software is still under development.

The DOT input syntax

There are two aspects to an input syntax, namely
the concrete and the abstract. The abstract syntax
is the structure or organisation that the syntax pro-
vides. The concrete syntax is a means of expressing
objects so organised. Provided they have the same
abstract syntax, translation from one concrete syn-
tax to another will be a routine matter. The parsing
process starts with a concrete instance of the struc-
ture, and produces from it events that characterise
its abstract structure.

In SGML the concept of the content model pro-
vides a large part of the abstract syntax. It might
say, for example, that an article such as this one con-
sists of front matter, sections and end matter. Each
section would be a sequence of paragraphs, together
with figures and tables. The end matter might con-
sist of appendices and a bibliography. The latter
would be a sequence of bibliographic items.

In LATEX one would write
\section{Input syntax}

to start a section. In SGML one might write
<section title="Input syntax">

to start a section. This gives two examples of a
concrete syntax. In SGML the title is an attribute
of the section tag. In LATEX, Input syntax is a
parameter of \section.

The abstract syntax provided by SGML is solid
and well-understood. It is already widely used in
data processing. The concrete syntax, however, tends
to be somewhat verbose and difficult to use without
dedicated software. This has been an obstacle to its
widespread use. In the author’s view, with XML this
problem will become more acute.

Twenty years ago or so, the text formatting pro-
grams troff and nroff were developed, as part of
UNIX. In these systems, a dot at the start of a line
is an escape character, which can be used to call a
macro. For example

.SH 2.1 "Section heading"

might introduce a section.
The author has developed a syntax whose con-

crete form is similar to the dot syntax of troff and
nroff, but whose abstract syntax is modelled on
SGML. This syntax we call the DOT syntax. As in
SGML, a tag name can contain digits, period and
hyphen as well as letters. As a section is, say a
second-level head, one could write

.h2 Input syntax

to start a section.
In LATEX one might write
\documentclass{article}

TUGboat, vol 20(3), (1999), pp. 248–254 3

\author{Jonathan Fine}
\title{Active \TeX\ and input syntax}
\date{20 January 1999}

to start an article. In SGML terms, the author, title
and date are all attributes of the article element.

As in SGML, the DOT syntax allows start tags
to have attributes. One might write

.article Active &TeX and input syntax

..author Jonathan Fine

..date 20 January 1999

to specify the same information. This double dot
notation for attributes is similar to the leading dots
notation that TEX the program uses to show the
content of boxes [8, page 66]. LATEX does not really
have a concept of attributes.

An end tag in the DOT syntax is like so:
./article This is a comment

but, as in SGML, end tags can often be implied by
the context. For example, if a section cannot contain
a section, the start of a new section implies the end
of the current one.

SGML has the useful concept of a short refer-
ence. In the DOT syntax the start of a line, the
end of a line, white space at the start of a line
and a blank line are the possible short reference
events. One can set matters up so that ordinary
lines start paragraphs, blank lines end paragraphs
and indented lines commence math mode. Thus the
fragment

Einstein’s famous equation
E = m c ^ 2

expresses the equivalence of
matter and energy.

might be equivalent to
Einstein’s famous equation
.eq

E = m c ^ 2
./eq
expresses the equivalence of
matter and energy.

but the former is easier both to type and to read.
In summary, the DOT syntax combines the power

of SGML with the simple concrete syntax of troff
and nroff. It provides a concrete syntax that ordi-
nary authors can use, whose abstract form is equiv-
alent to that of SGML.

Macro programming

This section is particularly for the TEXnically mind-
ed. In Active TEX all characters are active. This is
both a problem and an opportunity for the macro
programmer. Ordinarily a line in a TEX file such as

\def \hello {\message{Hello world!}}

would define a macro hello, whose execution issues
a greeting. This relies on the customary or plain cat-
egory codes being in force. In Active TEX another
approach must be taken.

Ordinarily, control sequences are formed using
TEX’s eyes. Thus, \def in the source file produces
the control sequence def.

Active TEX uses the mouth of TEX, or more
exactly csname and endcsname, to form control se-
quences. Macro definitions will be built up using
aftergroup accumulation. The plain code line

\expandafter \aftergroup
\csname def\endcsname

contributes the control sequence def aftergroup.
Similarly, the lines
\aftergroup {\iffalse}\fi
\iffalse{\fi \aftergroup}

contribute left and right braces respectively. Finally,
if the macro

\def \agchar #1{\expandafter
\aftergroup \string #1}

is passed a character as an argument, it will con-
tribute aftergroup the inert form of this character.

This mechanism allows us to define macros with-
out making use of the ordinary category codes. For
example, if we call begingroup, then aftergroup
commands as detailed above, and then endgroup,
the result could give exactly the same definition of
hello as at the beginning of this section.

To store such definitions in a file, a syntax is
required. Active TEX has been set up so that in a
compiled TEX code (ctc) file, a line such as

def hello {message
{’H’e’l’l’o’ ’w’o’r’l’d’!}};

has exactly the same effect as the previous defini-
tion. Within a ctc file, a letter takes itself and
all visible characters that follow, and uses csname,
endcsname and aftergroup to form and contribute
a control sequence. Similarly, active { and } con-
tribute explicit (or ordinary) begin- and end- group
characters { and } aftergroup. Active right quote ’
is as agchar above. Finally, the semicolon ; closes
the existing accumulation group and opens a new
one.

This technique of aftergroup accumulation is
enormously powerful. It allows arbitrary control
sequences and character tokens to be placed into
macro definitions. One can even do calculations or
pick up values from an external file, as the defini-
tions are being made. Tools are required to make
full use of this power.

TUGboat, vol 20(3), (1999), pp. 248–254 4

Suitable content in ctc files allows arbitrary
macros to be defined. Active TEX has a develop-
ment environment, which produces ctc files from
suitable source code files. For example,

def hello
{ message { "Hello world!" } } ;

will when compiled produce the ctc code exhibited
above.

Here is another example:
def ctc.letter
{

begingroup ;
string.visible.chars ;
let SP endcs ; let TAB SP ;
let RE suspend.RE ;
let suspend endcs ;

xa endgroup xa ag cs ;
}

This macro is used within ctc files to produce con-
trol sequences aftergroup.

Some comments are in order. Any visible char-
acters can appear in control sequence names. This
power should not be abused. We rely on the defini-
tions

def string.visible.chars
{

let lcletter string ;
let ucletter string ;
let digit string ;
let symbol string ;

}
def suspend.RE { suspend ; RE } ;

being made already. The tokens SP, TAB and RE in
the source file produce (and here it is a mouthful)
characters in the ctc file that in turn produce ac-
tive space, tab and end-of-line characters aftergroup.
The tokens xa, ag, cs and endcs in the source file
are shorthand for expandafter, aftergroup, csname
and endcsname respectively. It is the latter strings
that are written to the ctc file by the compiler.
Semicolons in macro definitions are for punctuation
only. They are ignored. Outside macro definitions
they trigger renewal of the aftergroup accumulation
group.

This process, of defining macros via ctc files,
allows many of the basic problems in TEX macro de-
velopment to be solved. For example, one can insist
that identifiers (tokens in the source file) be declared
before they can be used. No more misspelt identifier
names! One can also apply a prefix to chosen iden-
tifiers, thus segmenting the name space. This will
allow a module to control access to its identifiers.
No more name clashes!

In the same way, one can use named rather than
numbered parameters in macro definitions. For ex-
ample, instead of

\def \agchar #1{\expandafter
\aftergroup \string #1}

as above, one could write

def ag.char Char { xa ag str Char } ;

where Char has been previously declared to be a
macro parameter place holder.

Although this process is somewhat indirect, it
does not cause performance to suffer. The compi-
lation process, to produce the ctc files, needs to
be done only once, by the macro developer. With
modern machines, this does not take long. Similarly,
most files will be loaded only once, in the process of
making a preloaded format file.

In fact, Active TEX gives two performance ben-
efits. The first is that macro programmers no longer
need to resort to tricks, to obtain access to unusual
control sequences or character tokens. Thus, more
efficient code can be written. The second is that ctc
files are generally quite compact. This compression
allows them to be retrieved from the hard disc (or
network) more rapidly. The DOT syntax gives the
same benefits.

Tools for macro programmers are under devel-
opment. For example, short references will cause
indentation to indicate code lines. This section has
given examples of what has been done already, and
a taste of what lies in the future. The author invites
comments.

Processing text

We now turn to the raison d’être of TEX, which is
of course typesetting. In §2 we saw how the DOT

input syntax allows a document to be broken down
into elements with attributes. In §3 we saw some
examples of how Active TEX can be programmed.
This section is concerned with the content of the
document or, more exactly, with the text and the
attribute values.

Typesetting plain text, such as

This is plain text.

is straightforward. Each visible character produces
itself, and spaces give interword spaces. Thus the
values

let lcletter string ;
let ucletter string ;
let digit string ;
let symbol string ;
def SP { unskip ; ~ } ;

TUGboat, vol 20(3), (1999), pp. 248–254 5

will, to a first approximation, suffice. (The unskip is
present so that multiple space characters will count
as one. The ~ is Active TEX’s way of calling for an
ordinary space character.)

Occasionally, the user will want to add empha-
sis. In SGML one uses tags

emphasis

like so, while in LATEX one uses a macro
\emph{emphasis}

but in Active TEX one might use
Plain text with {emphasis}.

for example. Because { and } are active, they can
be programmed to open and close an emphasised
group.

This brings us to perhaps the most important
concept of this section, which is that of a data con-
tent notation (DCN). Roughly speaking, such tells
us how text is to be processed. For example, the
plain text above already has a DCN, namely that
it is in English. This is very important if we are
using a spell checker or a search engine. Computer
programming languages are more formal examples
of a data content notation. Mathematics encoded
in either plain or LATEX is a third example.

The DOT syntax will be set up so that a data
content notation can be associated to the text in
each element, and to the text in each attribute value.
The DCN will, in a more or less formal manner, tell
us what is admissible and how it should be pro-
cessed. The specification of a DCN is not, however,
a matter for the DOT syntax. Rather, it is for the
users and experts in the area. Many countries have
official bodies that attempt to regulate and bring
order to the use, at least in printed form, of a lan-
guage.

The author suggests as a first step that for plain
text a DCN along the following lines be used. For
emphasis use { and }. For bold use + and +, and
for math use $ and $. For verbatim use | and |.
Certain nestings will be prohibited. The following

Plain text, {emphasis},
|verbatim| and +bold+,
with some elementary
$2+2=4$ mathematics.

is an example of its use.
In math mode, new rules will be required. The

author suggests that ordinary TEX but without the
backslashes, like so

sin ^2 theta + cos ^2 theta = 1

as a first approximation. This is only a beginning.
Building up a complete system that is capable of
handling the complexity of modern mathematical

notation, whilst retaining both rigour and ease of
use, is not going to be an easy matter. Gaining gen-
eral acceptance and support of the user community
is as much a problem as the formulation and solution
of the technical problems.

When SGML is used for markup, there is a ten-
dency to use it for everything, regardless of size.
This causes enormous problems to users who either
do not have the software tools required, or who pre-
fer to work with plain text files. For example, in the
C programming language the & operator gives the
address of a variable. Code fragments such as

ptr = &i ;

are common. But in SGML, & followed by a letter
gives an entity reference, so for an SGML parser to
produce the above as output, it must be given

ptr = &i ;

as input. Something similar happens if one wishes
to produce a<b as parser output, for the <b must
not be recognised as a start tag.

Part of the philosophy of the DOT syntax is
that it deals with the big things (and also some of
the medium sized) while the data content notation
deals with the little things. The DOT syntax will
have its parser, and each DCN will have its parser.
They take turns in processing the input stream.

Let us now return to typesetting. Most of the
time, when TEX is typesetting, it is forming either
a horizontal list or a math list. Each DCN will, as it
processes characters, add items to the current list.
Special characters (such as $, { and }) will change
the mode in some way. From time to time, say at
the end of a title, the current list will be closed and
material will be added to the main vertical list, for
example. From here on the main difference between
plain TEX, LATEX, CONTEXT and Active TEX will
be in the libraries of macros used for page makeup,
output and so forth.

Typesetting is the purpose of a TEX macro pack-
age. TEX was developed to allow typesetting of the
highest quality. However, not until the basic func-
tions of Active TEX have been met will it be possible
to move on to the typesetting (composition, hyphen-
ation and justification, galleys and page makeup) as-
pects of the process. Put another way, macro pack-
ages such as plain and LATEX have typesetting as
their main purpose. Rigour, power and ease of use
are the main goals of Active TEX, at least in this
stage of its development. A fourth goal is to pro-
vide an enduring fixed point for document source
files.

TUGboat, vol 20(3), (1999), pp. 248–254 6

History and prospects

Although the basic concept of Active TEX is quite
simple—all characters are active—it is surprising
just how long it has taken for this idea to emerge.
A brief history follows.

In plain TEX the tilde ~ is an active character,
which produces an unbreakable interword space, and
in math mode apostrophe ’ is effectively an active
character, used for putting primes on symbols, as
in f ′(x). Technically, a prime is a superscript. In
addition space and end-of-line could be made active,
to achieve special results such as verbatim listing of
files. In 1987 Knuth [9] wrote about some macros
he had written for his wife, in which many of the
symbols are active.

In 1990 Knuth froze the development of TEX.
In his announcement [10] he wrote:

Of course I do not claim to have found the
best solution to every problem. I simply claim
that it is a great advantage to have a fixed
point as a building block. Improved macro
packages can be added on the input side; im-
proved device drivers can be added on the
output side.
In 1992 Fine [2] produced the \noname macro

development environment, which, like Active TEX,
is based on aftergroup accumulation. This solves
a major technical problem, namely how to define
exactly the macros we wish to define, when the cat-
egory codes are against us. The \asts problem [8,
page 373] at the start of Appendix D (Dirty tricks)
is solved using aftergroup accumulation.

In 1993 Fine presented a paper [3] to the AGM
of the UK TEX Users Group that contains in embry-
onic form most if not all of the ideas in this paper.
For example, he wrote

Let us solve all category code problems once
and for all by insisting that the document be
read throughout with fixed category codes.

and then described how ‘\’, for example, could be
an active character that parses control sequences,
in much the same way as ctc.letter does. The
paper also contains other prospects that have not
been discussed here, such as visual or WYSIWYG

TEX (see [7] for a more recent presentation.)
In 1994 Fine [4] argued that the deficiencies in

TEX the program had been exaggerated, and that
“It would be nice if both TEX and its successor
shared at least one syntax for compuscripts that are
to be processed into documents” (p. 385). This syn-
tax would have to be rigorous.

In 1994–95 Fine went the whole way, and made
all characters active. Using this, he produced a pro-

totype TEX macro package that was able to typeset
directly from SGML document files. Due to lack
of both sponsorship and commercial interest, the
project was left unfinished. This work was presented
at the Bridewell meeting (January 1995) on Portable
Documents, and published both in Baskerville [5]
and MAPS [6], but regrettably not in the special
TUGboat issue 16 (2) on TEX and SGML, published
later that year.

In late 1997 the project was revived, and in May
1998 Fine spoke on Active TEX and input syntax at
a meeting of the UK TEX Users Group. Since then
a proof-of-concept version of the macros has been
available to all those who ask.

There have been other developments that make
extensive use of active characters. Michael Downes
[1] has done important work on the typographic
breaking of equations. He writes (p. 182):

Some of the changes are radical enough that
it would be more natural to do them in LATEX3
than in LATEX2e—e.g., for LATEX3 there is a
standing proposal to have nearly all nonal-
phanumeric characters active by default; hav-
ing ^ and _ active in this way would have
eased some implementation problems.

Werner Lemberg [12] describes the CJK (Chi-
nese, Japanese and Korean) package. This package
makes the extended ASCII or eight-bit characters
active. He notes (p. 215):

It’s difficult to input Big 5 and SJIS encod-
ing directly into TEX since some of the val-
ues used for the encodings’ second bytes are
reserved for control characters: ‘{’, ‘}’ and
‘\’. Redefining them breaks a lot of things in
LATEX; to avoid this, preprocessors are nor-
mally used [. . .].

Active TEX has been designed from the ground
up so that it can go the whole way, and allow prob-
lems such as these to be given completely satisfac-
tory solutions, without unnecessary difficulties. The
only real price seems to be performance. Because it
does much more, it is not as quick as plain TEX or
LATEX. This could be a problem for those who use
a 286, but on a 486 or better, disk input/output is
the real bottleneck.

One of the great things about TEX the program
is that it is a fixed point. I would like Active TEX to
become a similar fixed point, upon which users can
build style files and the like. I would also like the
DOT syntax to become a fixed point.

When TEX was developed, Donald Knuth had
[8, page vii] the active interest and support of the

TUGboat, vol 20(3), (1999), pp. 248–254 7

American Mathematical Society, the National Sci-
ence Foundation, the Office of Naval Research, the
IBM Corporation, the System Development Foun-
dation, as well as hundreds of more or less ordinary
users, many of whom went on to play an active part
in the life of the TEX Users Group, and the commu-
nity generally, and some of whom are still with us.

I firmly believe that Active TEX is a worthwhile
idea whose time has come. Without support, its
completion will be delayed, and it may not be pos-
sible to make it freely available. Please give it your
support.

References

[1] Michael Downes, Breaking equations, TUGboat,
18 (3) (1997), 182–194.

[2] Jonathan Fine, The \noname macros — a techni-
cal report, TUGboat, 13 (4) (1992), 505–509.

[3] , New perspectives on TEX macros,
Baskerville, 3 (2) (1993), 17–19.

[4] , Documents, compuscripts, programs and
macros, TUGboat, 15 (3) (1994), 381–385.

[5] , Formatting SGML manuscripts,
Baskerville, 5 (2) (1995), 4–7.

[6] , Formatting SGML manuscripts, MAPS,
14 (1995), 49–52.

[7] , Editing .dvi files, or Visual TEX, TUG-
boat, 17 (3) (1996), 255–259.

[8] Donald E. Knuth, The TEXbook, Addison-
Wesley (1984).

[9] , Macros for Jill, TUGboat, 8 (3) (1987),
309–314.

[10] , The future of TEX and METAFONT,
TUGboat, 11 (4) (1990), 489.

[11] Sebastian Rahtz, Editorial, Baskerville 8 (4/5)
(1998), 1.

[12] Werner Lemberg, The CJK package for
LATEX 2ε: multilingual support beyond babel,
TUGboat, 18 (3) (1997), 214–224.

